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1 Introduction

The pioneering work of Blanchard and Quah (1989), King, Plosser, Stock, and Watson (1991),

and Shapiro and Watson (1988) has stimulated widespread interest in using vector autoregres-

sions (VARs) that impose long-run restrictions to identify the effects of shocks. This method-

ology has proved appealing because it does not require a fully-articulated structural model or

numerous model-specific assumptions.

One important recent application of this approach, introduced by Gaĺı (1999), involves

using long-run restrictions to identify the effects of a technology shock. The key identifying

assumption in this approach is that only technology innovations can affect labor productivity in

the long-run. As discussed in Gaĺı (1999), this assumption holds in a broad class of models under

relatively weak assumptions about the form of the production function. Numerous researchers

have used this approach to assess how technology shocks affect macroeconomic variables, and

to quantify the importance of technology shocks in accounting for output and employment

fluctuations.1

While the simplicity of Gaĺı’s methodology has contributed to its broad appeal, the recent

literature has suggested reasons to question whether it is likely to yield reliable inferences about

the effects of technology shocks. One reason is that it is difficult to estimate precisely the long-

run effects of shocks using a short data sample. Accordingly, as emphasized by Faust and Leeper

(1997), structural VARs (SVARs) that achieve identification through long-run restrictions may

perform poorly when estimated over the sample periods typically utilized. A second reason,

discussed by Cooley and Dwyer (1998) and Lippi and Reichlin (1993), is that a short-ordered

VAR may provide a poor approximation of the dynamics of the variables in the VAR if the true

data-generating process has a VARMA representation.

In this paper, we critique the reliability of the Gaĺı methodology by using Monte Carlo

simulations of reasonably-calibrated dynamic general equilibrium models. In particular, we

compare the response of macroeconomic variables to a technology innovation derived from

1See, for example, Gaĺı (1999), Francis and Ramey (2003), Christiano, Eichenbaum, and Vigfusson (2003),

and Altig, Christiano, Eichenbaum, and Lindé (2003).
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applying Gaĺı’s identifying scheme with the “true” response implied by our models. We utilize

two alternative models of the business cycle as the data-generating process. The first is a

standard real business cycle (RBC) model with endogenous capital accumulation that includes

shocks to total factor productivity, labor income tax rates, government spending, and labor

supply. The second model incorporates some of the dynamic complications that have been

identified in the recent literature as playing an important role in accounting for the effects of

real and monetary shocks.2 These features include habit persistence in consumption, costs of

changing investment, variable capacity utilization, and nominal price and wage rigidity. The

latter model, which we call the sticky price/wage model, provides an alternative perspective

on how technology shocks affect the labor market in the short-run, since hours worked decline

sharply after a positive innovation in technology rather than exhibit a modest rise as in the

RBC model.

We generate Monte Carlo simulations from each model using an empirically-reasonable

sample length of 180 quarters. The SVAR that we estimate using the simulated data includes

labor productivity growth, the level of hours worked, the ratio of nominal consumption to

output, and the ratio of nominal investment to output.3 One appealing feature of this speci-

fication is that a low-ordered VAR (i.e., four lags) provides a close approximation to the true

data-generating process in the benchmark parameterizations of each of the models considered.4

This allows us to interpret the bias in the estimated impulse responses as arising almost exclu-

sively due to the small sample problems emphasized by Faust and Leeper (1997).

Broadly speaking, the shocks derived from application of the Gaĺı methodology to the

simulated data “look like” true technology shocks in both of the models we consider. In par-

ticular, the mean impulse response functions (IRFs) of output, investment, consumption, and

hours worked derived from the Monte Carlo simulations uniformly have the same sign and

2See, for example, Christiano, Eichenbaum, and Evans (2001) and Smets and Wouters (2003).
3Our inclusion of consumption and investment shares follows Christiano, Eichenbaum, and Vigfusson (2003).
4As we show below, our four-variable SVAR with only four lags performs well in recovering the true responses

in the benchmark parameterizations of each of the models, when we estimate the SVAR using the population

moments from the DGE model rather than sample moments.
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qualitative pattern as the true responses. Moreover, we find that the probability of inferring a

response of output, consumption, or investment that has the qualitatively incorrect sign (even

for only a few quarters) is generally low.

However, we find that small-sample bias poses quantitative problems for this identifying

scheme. There is substantial downward bias in the estimated responses of output, labor pro-

ductivity, consumption, and investment derived from the Monte Carlo simulations in each of

the models. Moreover, given the bias and substantial spread in the distribution of the impulse

responses, we find that the probability that a researcher would estimate a response for output

that lies uniformly more than 33 percent away from the true response (for the first four quarters

following the shock) is about 25 percent in each of the models.

We show that the bias in the estimated impulse responses is dependent on model struc-

ture. Within the context of the benchmark models, the bias can be attributed to two related

sources. First, the slow adjustment of capital makes it hard to gauge the long-run impact

of a technology shock on labor productivity, contributing to downward bias in the estimated

impulse responses.5 Second, the identification procedure has difficulty disentangling technol-

ogy shocks from other shocks that have highly persistent, even if not permanent, effects on

labor productivity (such as labor supply or tax rate shocks).6 As a result, even in the absence

of shocks that would violate Gaĺı’s long-run identifying assumption, the estimated technology

shock may incorporate a sizeable non-technology component. Accordingly, the bias in the es-

timated response of a given variable to a technology shock depends on the relative magnitude

of technology and non-technology shocks, and on its response to non-technology shocks.

Interestingly, though the estimated distribution of impulse responses may appear wide,

5The fact that slow adjustment of capital creates problems for the identification scheme may seem surprising

given the well-known problem emphasized by Cogley and Nason (1995) that standard real business cycle models

fail to generate enough endogenous persistence. However, Cogley and Nason (1995) focus on the inability of

these models to generate enough positive autocorrelation in output growth, while our emphasis is on the level

of labor productivity.
6In this respect, our paper shares similarities with an earlier literature emphasizing that the measured Solow

residual is contaminated by aggregate demand disturbances. See, for example, Evans (1992) and references

therein.
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our results suggest that the SVAR approach may still provide some basis for discriminating

between models, if the models have sufficiently divergent implications about how technology

shocks affect the labor market. For instance, we find that the probability of finding an initial

decline in hours that persists for two quarters is 93 percent in the model with nominal rigidities,

but only 26 percent in the RBC model. Accordingly, a researcher who found that hours worked

declined after a positive innovation in technology in the data could reasonably interpret this

finding as providing some evidence in favor of the sticky price/wage model.

By contrast, we find that there is very little precision in estimating the contribution

of technology shocks to output fluctuations at business cycle frequencies. For example, the

90 percent confidence intervals for the contribution range between 7 and 90 percent for the

benchmark RBC model, and between 7 and 80 percent for the sticky price/wage model.

Our analysis also illustrates how the performance of the Gaĺı procedure may be influenced

by the selection of variables in the VAR, the transformations applied, and the inclusion of

a wider array of shocks. We find that the performance of the Gaĺı procedure may exhibit

noticeable sensitivity to the specification of variables in the VAR. This sensitivity in part

reflects that for some variable choices a low-ordered VAR may perform poorly in capturing the

VARMA representations implied by our models.7 We also find that the performance of the Gaĺı

methodology deteriorates on some dimensions with the inclusion of technology shocks that are

stationary but highly persistent (particularly in the RBC model).

Overall, Gaĺı’s methodology appears to offer a fruitful approach to uncovering the effects

of technology shocks, and it is encouraging that our baseline, four-variable SVAR specifica-

tion performs reasonably well across the alternative models considered. However, our analysis

emphasizes that the conditions under which the Gaĺı methodology performs well appear con-

siderably more restrictive than implied by the key identifying restriction, and depend on model

7In a recent paper, Chari, Kehoe, and McGrattan (2004) find that bivariate SVARs with labor productivity

growth and hours (in either levels or differences) perform poorly in the RBC model. Our analysis corroborates

their finding in this particular case; however, we consider a broader class of models and SVAR specifications.

Overall, we are more sanguine towards the Gaĺı approach because we find specifications (e.g., the four-variable

SVAR) that perform reasonably well across the models we considered.
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structure, the nature of the underlying shocks, and on variable selection in the SVAR. Ac-

cordingly, we caution that empirical estimates of the effects of technology shocks should not

be regarded as model-independent stylized facts. Instead, the interpretation of results derived

from the Gaĺı approach should be informed by the model or class of models that the researcher

regards as most plausible, with the model serving as a guidepost about biases likely to arise

and the limitations of the approach.

The rest of this paper is organized as follows. Section 2 outlines our baseline RBC model

and describes the calibration. Section 3 reviews the Gaĺı identification scheme. Section 4 reports

our results for the RBC model, and Section 5 discusses the results for the sticky price/wage

model. Section 6 concludes.

2 The RBC Model

We begin by outlining a relatively standard real business cycle model. The model structure is

very similar to that analyzed by King, Plosser, and Rebelo (1988), though we include a broader

set of shocks.

2.1 Household Behavior

The utility function of the representative household is

Et

∞∑
j=0

βj{log (Ct+j)− χ0t+j

N1+χ
t+j

1 + χ
}, (1)

where the discount factor β satisfies 0 < β < 1 and Et is the expectation operator conditional

on information available at time t. The period utility function depends on consumption, Ct,

labor, Nt, and a stochastic shock, χ0t, that may be regarded as a shock to labor supply. We

assume that this labor supply shock evolves according to:

log(χ0t) = (1− ρχ) log(χ0) + ρχ log(χ0t−1) + σχεχt, (2)

where χ0 denotes the steady state value of χ0t and εχt ∼ N(0, 1).
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The representative household’s budget constraint in period t states that its expenditure

on consumption and investment goods (It) and net purchases of bonds Bt+1 must equal its

after-tax disposable income:

Ct + It + 1
1+rt

Bt+1 −Bt =

(1− τNt)WtNt + Γt + Tt + (1− τKt)RKtKt + τKtδKt.
(3)

The household earns after-tax labor income of (1− τNt)WtNt, where τNt is a stochastic tax on

labor income, and also receives an aliquot share of firm profits Γt and a lump-sum government

transfer of Tt. The household leases capital services to firms at an after-tax rental rate of (1−
τKt)RKt, where τKt is a stochastic tax on capital income. The household receives a depreciation

writeoff of τKtδ per unit of capital (where δ is the steady state depreciation rate of capital).

Purchases of investment goods augment the household’s capital stock according to the transition

law:

Kt+1 = (1− δ)Kt + It. (4)

In every period t, the household maximizes utility (1) with respect to its consumption,

labor supply, investment, (end-of-period) capital stock, and real bond holdings, subject to its

budget constraint (3), and the transition equation for capital (4).

2.2 Firms

The representative firm uses capital and labor to produce a final output good that can either

be consumed or invested. This firm has a constant returns-to-scale Cobb-Douglas production

function of the form:

Yt = Kθ
t (ZtVtNt)

1−θ, (5)

In the above, Zt is a unit-root process for technology whose law of motion is governed by:

log(Zt)− log(Zt−1) = µz + σzεzt, (6)

and Vt is a stationary process for technology whose law of motion is governed by:

log(Vt) = ρV log(Vt−1) + σV εV t, (7)
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with εzt, εV t ∼ N(0, 1).

The firm purchases capital services and labor in perfectly competitive factor markets, so

that it takes as given the rental price of capital RKt and the aggregate wage Wt. Since the

firm behaves as a price taker in the output market as well as in factor markets, the following

efficiency conditions hold for the choice of capital and labor:

MCt

Pt

=
Wt

MPLt

=
RKt

MPKt

= 1. (8)

2.3 Government

Some of the final output good is purchased by the government, so that the market-clearing

condition is:

Yt = Ct + It + Gt. (9)

Government purchases are assumed to have no direct effect on the utility function of the rep-

resentative household. We also assume that government purchases as a fraction of output,

gt = Gt/Yt, are exogenous and evolve according to:

log(gt) = (1− ρg) log(g) + ρg log(gt−1) + σgεgt, (10)

where g denotes the steady state value of gt and εgt ∼ N(0, 1).

The government’s budget is balanced every period, so that total taxes – which include

both distortionary taxes on labor and capital income – equal the sum of government purchases

of the final output good and net lump-sum transfers to households.8 Hence, the government’s

budget constraint at date t is:

Tt + Gt = τNtWtNt + τKt(RKt − δ)Kt. (11)

The tax rates on capital and labor are assumed to be exogenous and evolve according to:

τit = (1− ρτi
)τi + ρτi

τit−1 + στi
ετit, (12)

where τi is the steady state tax rate and ετit ∼ N(0, 1) for i = K, N .

8The assumption of a balanced budget is not restrictive given the availability of lump-sum taxes or transfers.
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2.4 Solution and Calibration

To analyze the behavior of the model, we first apply a stationary-inducing transformation

to those real variables that share a common trend with the level of technology. This entails

detrending real GDP, the GDP expenditure components, and the real wage by Zt and the

capital stock, Kt, by Zt−1. We then compute the solution of the model using the numerical

algorithm of Anderson and Moore (1985), which provides an efficient implementation of the

solution method proposed by Blanchard and Kahn (1980).

Table 1 summarizes the calibrated values of most of the model’s parameters. The model

is calibrated at a quarterly frequency so that β = 1.03−0.25 and δ = 0.02. The utility function

parameter χ is set to 1.5 so as to imply a Frisch elasticity of labor supply of 2/3, an elasticity

well within the range of most empirical estimates.9 The capital share parameter θ is set to 0.35,

and we normalized χ0 = 1, as χ0 does not affect the model’s log-linear dynamics.

Using data on the share of government consumption to U.S. GDP, we fit a first order

autoregression for gt (allowing for a linear time trend) and estimated ρg and σg in equation (10)

to be 0.98 and 0.003, respectively. We set g so that the ratio of government spending to output

is 20% in the model’s non-stochastic steady state.

For the parameters governing the two tax rate series, we estimated equation (12) using

OLS after constructing these tax rates series based on U.S. data from 1958-2002 following the

methodology described in Jones (2002).10 Our estimates implied τN = 0.22, ρτN
= 0.98, and

στN
= 0.0052 for the labor tax rate and τK = 0.38, ρτK

= 0.97, and στK
= 0.008 for the capital

tax rate.

For reasons that we discuss below, it is convenient to exclude capital tax rate and tem-

porary technology shocks from our benchmark calibration of the RBC model; thus, we set

στK
= σV = 0. In this case, we can obtain a time series for Zt by defining the Solow residual

as:

St =
Yt

Kθ
t N

1−θ
t

, (13)

9See, for example, Pencavel (1986), Killingsworth and Heckman (1986), and Pencavel (2002).
10Following Appendix B in Jones (2002), we used quarterly data collected by the Bureau of Economic Analysis.
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and noting that Zt = S
1

1−θ

t . We then estimate µz = 0.0037 and σz = 0.0148. Later, we give

special attention to the capital tax rate and temporary technology shocks in an alternative

parameterization of the RBC model.

In the absence of labor-supply shocks, our calibrated RBC model would significantly

underestimate the volatility in hours worked – a familiar problem in the real business cycle

literature. To see this, Table 2 compares the second moments of several key variables that are

implied by our model with their sample counterparts based on U.S. data. As shown in the

column labelled “σχ = 0”, the model significantly understates the ratio of the standard devia-

tion of HP-filtered hours to the standard deviation of HP-filtered output. For our benchmark

calibration, we address this issue by incorporating labor supply shocks.11 In particular, we set

ρχ = 0.95 and choose an innovation variance σχ that allows the model to match the observed

standard deviation of HP-filtered hours relative to the standard deviation of HP-filtered output.

Table 2 shows the selected moments for the benchmark RBC model. A comparison

of the model’s implications for the volatility of output, investment, and consumption to the

corresponding sample moments suggests that this calibrated model performs fairly well on

these dimensions, even though it was not calibrated specifically to match these moments.

3 The SVAR Specification

In this section, we outline the estimation procedure that a researcher would follow given a single

realization of data. The structural VAR takes the form:

A(L)Xt = ut = A−1
0 et, (14)

where A(L) = I −A1L− ...−ApL
p, and Ai for i = 1, 2, ..., p is a square matrix of reduced-form

parameters; L is the lag operator, and Xt , ut, and et are 4X1 vectors of endogenous variables,

reduced-form innovations, and structural innovations, respectively. The lag length, p, is chosen

by using the information criterion in Schwarz (1978), where p ∈ {1, 2, ..., 10}.
11Others who have followed this approach include Hall (1997), Shapiro and Watson (1988), and Parkin (1988).
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In our benchmark specification of the VAR, Xt contains the log difference of average labor

productivity, the log of hours worked, the log of the consumption-to-output ratio, and the log

of the investment-to-output ratio. All variables are expressed as a deviation from the model’s

nonstochastic steady state, and average labor productivity is defined as Yt/Nt. The inclusion of

average labor productivity growth in Xt is standard in the empirical literature using VARs to

identify technology shocks. While the empirical literature is divided on whether hours worked

are best included in levels or differences, the former specification is selected, because the DGE

model implies that hours are stationary in levels. The ratios of investment and consumption

to output are included in the VAR, in part because Christiano, Eichenbaum, and Vigfusson

(2003) have found these variables to be important in controlling for omitted-variable bias when

using U.S. data.

The identification of the technology shock is achieved in the following way. First, it is

assumed that the innovations are orthogonal and have been normalized to unity so that

Eete
′
t = A0ΣA′

0 = I, (15)

where Σ denotes the variance-covariance matrix of the reduced-form residuals. Denote the

first element of et as ezt, the technology shock identified by the VAR. Following Gaĺı (1999),

a researcher would then impose that the technology shock is the only shock that can affect

the level of productivity in the long run, an assumption that is consistent with the models we

consider. Thus, letting R(L) = A(L)−1, it follows that

[R(1)A−1
0 ]1j = 0 for j 6= 1. (16)

Here, R(L) is the reduced-form moving average representation of the VAR given by

R(L) =
∞∑
i=0

RiL
i, (17)

where Ri is a 4X4 matrix and R0 = I. The restrictions associated with equation (16) are

imposed through a Cholesky decomposition after estimating A(L) and Σ using least squares.

This decomposition is used to solve for the first column of A−1
0 given that R(1) = A(1)−1. No

attempt is made to identify the non-technology shocks.
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In our Monte Carlo study, we generate 10,000 data samples from the relevant DGE model,

and apply the estimation strategy discussed above to each sample. Every data sample consists

of 180 quarterly observations.12

4 Estimation results for the RBC Model

Figure 1 reports the response of labor productivity, hours worked, consumption, investment,

and output to a technology shock for the benchmark calibration of the RBC model.13 In each

panel, the solid lines show the true responses from the DGE model. The innovation occurs at

date 1 and has been scaled so that the level of labor productivity rises by one percent in the

long run.

The dashed lines show the mean of the impulse responses derived from applying our

benchmark, four-variable SVAR to the 10,000 artificial data samples (the median response is

nearly identical).14 The dotted lines show the 90 percent pointwise confidence interval of the

SVAR’s impulse responses.15

As shown in Figure 1, the mean responses of labor productivity, consumption, investment,

and output have the same sign and qualitative pattern as the true responses. As indicated by

the pointwise confidence intervals, the SVAR is likely to give the appropriate sign of the response

for these variables. For hours worked, the mean estimate is also qualitatively in line with the

true response; however, the confidence interval is wide, indicating that there is a non-negligible

probability of a negative estimate.

Quantitatively, the SVAR does not perform as well. As seen in Figure 1, the mean

responses of the SVAR systematically underestimate labor productivity, consumption, invest-

12In the appendix, we discuss the sensitivity of our results to different sample lengths.
13More precisely, the responses shown are the deviations of the log level of each variable from the steady-

state growth path.
14We scale up the technology innovation derived from the SVAR by the same constant factor as applied to

the true innovation.
15These confidence intervals are also constructed from the estimated impulse responses derived from applying

the SVAR to the 10,000 artificial data samples from our model.
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ment, and output, while overestimating hours worked. To gauge the size of the bias, the top

row of Table 3 reports the average absolute percent difference between the mean response and

the true response over the first twelve quarters for each of the variables except hours worked.16

For hours, Table 3 reports the absolute value of the difference between the mean estimated

response and the true response (we simply report the difference because the true response is

very small). As reported in the first row of Table 3, labor productivity is underestimated by

the SVAR by 40% on average over the first 12 quarters after the innovation to technology, while

output is underestimated by 25%. We defer our explanation of these results to Section 4.1.

While useful for illustrating the bias associated with the SVAR’s estimates, the relative

distance measure does not capture the uncertainty that a researcher confined to a single draw

of the data would confront. After all, the impulse response derived using a single realization

of the data may diverge substantially from the mean. Accordingly, we consider an alternative

measure of how well the SVAR’s point estimates of the impulse responses match the truth. For

variable i, this measure is defined as

P̂i(
1

3
) = P (|rdl,i| ≥ 1

3
), ∀l ∈ {1, 2..., N}, (18)

where rdl,i =
d̂l,i−d∗l,i

d∗l,i
and d̂l,i denotes the estimated impulse response for the ith variable at lag l

for a given draw of data, and d∗l,i denotes the response from the DGE model. In words, P̂i(
1
3
) is

the probability that the SVAR produces an impulse response that lies at least 33 percent above

or below the true response for all lags between 1 and N, which we call a “large” error. Tables

4, 5, and 6 show these probabilities for N equal to two, four, and twelve quarters, respectively

(as noted below, we define the measure of a large error for hours worked differently). As shown

in the top row of Table 5, the probability of a large error over the first year is 43% for labor

productivity and 24% for output. Furthermore, we found that nearly all of the large misses of the

SVAR’s impulse responses for output and labor productivity were the result of underpredicting

the true response. Given the strict criterion that only counts impulse response functions that lie

16For variable i, this measure is defined as rdm
i = 1

12

∑12
l=1 |rdm

l,i| where rdm
l,i = d̂m

l,i−d∗l,i
d∗l,i

, and d∗l,i and d̂m
l,i

denote the DGE model’s impulse response and the SVAR’s mean response to a technology shock, respectively,

at lag l.
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uniformly outside the 33 percent band, our results suggest considerable estimation uncertainty

about the quantitative effects of a technology shock.

While the probability of underestimating labor productivity, consumption, output, and

investment is substantial, the probability of inferring an incorrect sign for several quarters is

very low (not reported). It is also interesting to assess the probability of inferring a response of

hours worked that has the incorrect sign in the first few periods, given the significant attention

recent research has devoted to this question. Accordingly, for hours worked, Tables 4, 5, and

6 report the probability that the estimated response of hours worked is incorrect (negative in

this model) in each of the first 2, 4, and 12 quarters, respectively. As shown in Figure 1, the

true response of hours is positive, and there is upward bias in the mean estimated response.

Nevertheless, Table 5 shows that there is a 23% chance a researcher would find that hours

worked fell for four straight quarters in the year following a technology shock.17

We can also use this framework to assess whether the SVAR approach yields reliable

estimates of the contribution of technology shocks to output volatility at business cycle fre-

quencies. The top left panel of Figure 2 shows the cumulative distribution function derived

from Monte Carlo simulations of our estimator of the contribution of technology shocks to

output fluctuations. This contribution is defined as RCz = σ2
y|z/σ

2
y where σ2

y denotes the un-

conditional variance of HP-filtered output in the model and σ2
y|z is the variance of HP-filtered

output conditional on only unit-root technology shocks.18 The distribution function appears

close to uniform over the unit interval so that the 90% confidence bands for the estimator in-

clude contributions ranging from 7 to 91 percent (confidence bands are indicated by stars on

the x-axis). Therefore, for the benchmark RBC model, the Gaĺı identification scheme provides

17This probability may seem surprisingly low given the width of the confidence intervals shown in Figure 1.

However, it is important to note that the confidence intervals are pointwise, while the probabilities reported in

Tables 4-6 are uniform measures, requiring that hours worked fall in each period for 2, 4 or 12 quarters.
18In order to estimate σ2

y|z we did the following: for a given replication of data from the DGE model, we used

the point estimates from the SVAR to bootstrap a series of 41,000 observations for output conditional on only

the identified technology shocks; we HP-filtered this series after dropping the first 1,000 observations. Similarly,

for σ2
y, we bootstrapped a series for output from the fitted VAR using all the shocks.
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little guidance about the importance of technology shocks in explaining output fluctuations at

business cycle frequencies.19

4.1 Interpreting the Bias

In this section, we begin by providing a statistical interpretation of the bias in the impulse

responses shown in Figure 1 which indicates that it is largely attributable to limited sample

size. We then provide an economic interpretation.

It is useful for heuristic purposes to regard one source of bias in the impulse responses

(illustrated in Figure 1) as arising from the use of a short-ordered VAR (i.e., four lags) to

approximate the true data-generating process. As emphasized by Cooley and Dwyer (1998), a

broad class of DGE models suggest that the variables included in a typical specification of a

SVAR are likely to have a VARMA representation. Even if the VARMA process is invertible so

that it has a VAR representation, a short-ordered VAR may provide a poor approximation.20

We refer to this source of bias as “truncation” bias. We derive this source of bias by using

the SVAR approach to “estimate” our four-variable VAR specification with four lags, except

that we replace sample moments with the true population moments implied by the RBC model.

The truncation bias for each variable is simply the difference between the response derived from

this population SVAR and the true response.21

Figure 3 compares the effects of a technology shock derived from the population SVAR

with the true model responses. Though the four variables in the VAR have a VARMA(4,5)

representation in our benchmark RBC model, it is clear that the truncation bias appears neg-

19Most research has found that technology shocks play a small role in driving output fluctuations over the

business cycle. A notable exception is Fisher (2002), who attempts to discriminate between multi-factor pro-

ductivity shocks and investment-specific technology shocks.
20Hansen and Sargent (2004) and Lippi and Reichlin (1993) analyze the problem in which the moving average

component is not invertible so that it is not possible to recover the fundamental shocks from a VAR of any

lag-length.
21The decomposition is admittedly somewhat artificial: one might suspect that this bias would be mitigated

in large samples if the lag order were instead allowed to increase with sample size. However, it is helpful

heuristically for assessing the relevance of this important critique of the SVAR approach.
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ligible for each of the variables depicted.22 Thus, for the benchmark calibration of the RBC

model, the assumption that a short-ordered VAR provides a good approximation to the true

data-generating process seems warranted. This proves attractive heuristically, because we can

interpret almost all of the bias as arising due to small sample bias of the type emphasized by

Faust and Leeper (1997).

Accordingly, we follow Faust and Leeper (1997) by decomposing the small-sample bias in

turn into two parts, and show that the magnitude of the small sample bias is largely attributable

to the difficulty in precisely estimating the long-run response of variables to the innovations in

the VAR. Noticing that equation (14) can be expressed as:

Xt = A(L)−1A−1
0 et = R(L)A−1

0 et, (19)

it is evident that the response of Xt to the underlying innovations, et, is influenced both by

the reduced-form moving average terms, R(L), and by the identifying restrictions as reflected

in A−1
0 . Therefore, we can think of one part of the bias as reflecting the small-sample error in

estimating the reduced-form moving average terms, which we call the “R bias”. The second

part reflects the error associated with transforming the reduced form into its structural form

by imposing the long-run restriction. This latter error occurs because small imprecision in

estimating A(L) is exacerbated by the nonlinear mapping involved with imposing the long-run

restriction. As a result, estimates of A−1
0 can be biased in small samples. We call the error

associated with the transformation of the reduced form to the structural form “A bias”.23

Returning to the lower right panel of panel of Figure 1, we provide a decomposition of the

overall bias in the mean response of labor productivity into three sources. The overall bias is

represented by the solid line labelled “total bias”, and is simply the difference between the mean

estimated response of labor productivity to a technology innovation and the true response. The

22We checked numerically that the benchmark RBC model implied a VARMA process that is invertible and

thus a fundamental representation. See the appendix for details of these calculations.
23Our decomposition is discussed in greater detail in the appendix. As discussed there, our “A bias” reflects

not only the error associated with transforming the reduced-form to structural, but also the error associated

with estimating Σ. We found this latter source of error was small.
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dotted line labelled “T bias” for truncation bias shows the bias introduced by assuming that

the variables in the VAR can be represented by a VAR with only four lags. As suggested by

Figure 3, this source of bias comprises only a tiny fraction of the bias in the mean response of

labor productivity. From the dashed-dotted line labelled “A bias”, it is clear that most of the

small-sample bias initially is attributable to the error in transforming the reduced form into its

structural form using the long-run restriction.24 Eventually, however, imprecision in estimating

the long-run responses has a roughly commensurate effect on each component, so that the R

bias contributes about as much to the bias as the A bias.

We now use the benchmark RBC model to provide an economic interpretation of the small

sample bias that illustrates how it depends on model structure. This bias can be attributed

largely to two related factors in our RBC model. First, the slow adjustment of capital makes

it hard to estimate the long-run impact of a technology shock on labor productivity, which

serves as a source of downward bias in the estimated impulse responses. Second, the SVAR

has difficulty disentangling technology shocks from highly persistent non-technology shocks, so

that the estimated technology shock may incorporate a sizable non-technology component. The

second source of bias has more pronounced effects on the estimated responses to a technology

shock as the relative magnitude of non-technology shocks rises, and as the non-technology

shocks become more persistent.

We conduct two experiments to show that the small sample bias is greatly reduced when

the exogenous and endogenous sources of persistence in the model are decreased. First, as seen

in the rows of Tables 3 to 6 labelled “with lower persistence”, we analyze the effects of halving

all of the AR(1) parameters of the non-technology shocks from their benchmark values. Table

3 shows that the (percentage) distance between the mean and the true response narrows for

all variables and especially for labor productivity, and Tables 4 to 6 indicate that there are

24In our analysis, there appears to be a connection between the type of imprecision emphasized by Faust and

Leeper (1997) and the weak instrument problem discussed by Pagan and Robertson (1998). In particular, we

find that when we estimate the SVAR using the instrumental variable approach of Shapiro and Watson (1988),

parameter values of the RBC model that implied the “A bias” was large corresponded to situations where there

were also weak instruments.
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sizeable declines in the frequencies of large misses for all the variables we consider. Our second

experiment combines the lower persistence of non-technology shocks with an increase in the

depreciation rate of capital from δ = 0.02 to δ = 0.9. In this case, labor productivity adjusts

more quickly in response to both technology and non-technology shocks. Table 3 shows that

the mean bias falls below 10% for all the variables.25

Our final experiment in this section illustrates the important influence that the non-

technology shocks may have on the SVAR’s estimated responses. We reduce the innovation

variance of the technology shock to 0.0049, or one-third of its benchmark value, thus effectively

increasing the relative size of the non-technology shocks. The mean estimated responses and

true responses to a technology shock under this alternative parameterization are depicted in

Figure 4 (and reported in Table 3 in the row labelled “with σz = 1/3X”). With this increase

in the relative size of the non-technology shocks, the estimated responses look more like the ef-

fects that arise from labor supply shocks (the dominant non-technology shock in the benchmark

calibration). To see this, we also plot the true responses to a labor supply shock in the same

figure. Observe that relative to their effects on labor productivity, labor supply shocks have

much larger effects on hours worked and investment than a true technology shock. Given that

estimates derived from the SVAR approach confound labor supply with true technology innova-

tions, the former shocks are a source of upward bias in the estimated responses of hours worked

and investment to a technology shock. Thus, with the increased importance of labor supply

shocks in this alternative calibration, the upward bias in the mean response of hours worked

is much more pronounced than under our benchmark calibration, and the bias in investment

shifts from negative to noticeably positive.

25With less exogenous and endogenous persistence, the SVAR’s ability to estimate the contribution of unit-

root technology shocks to output fluctuations at business cycle frequencies improves noticeably, though the

confidence interval is quite wide. For example, Figure 2 shows that the 90% confidence bounds range from

contributions of 38 to 90 percent for this alternative parameterization of the RBC model. It is only when the

number of observations are increased by several multiples that the confidence bands become reasonably tight

(as illustrated for the case of 1000 observations using this alternative parameterization).
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4.2 Sensitivity Analysis

We next use sensitivity analysis to illustrate how the performance of the Gaĺı procedure may

be influenced by the selection of variables in the VAR, the transformations applied, and the

inclusion of a wider array of shocks. We show that the performance of the Gaĺı procedure

may exhibit noticeable sensitivity to the specification of variables in the VAR. This sensitivity

reflects that for some variable choices a low-ordered VAR may perform poorly in capturing the

VARMA representations implied by the RBC model; thus, truncation bias has an important

influence on the estimated responses. We also find that the performance of the Gaĺı methodology

deteriorates on some dimensions with the inclusion of technology shocks that are stationary but

highly persistent.

Figure 3 shows the responses derived from a four-variable VAR that is modified to include

hours in differences rather than levels. As above, it is convenient to begin by abstracting from

small-sample issues, and hence replace sample moments with the model’s population moments

in estimating the VAR (again we use four lags in the VAR). Our model implies that hours

worked are stationary so that it might be expected that differencing hours would impair the

ability of a short-ordered VAR to recover the true responses.26 However, while the SVAR

modestly exaggerates the response of hours, it still does very well in capturing the quantitative

effects of a technology shock for the other variables. Furthermore, turning to the small sample

results in Tables 3-6, there is only modest evidence of a deterioration in performance. The mean

differences are generally similar to those obtained in the specification of hours in levels, and the

probability of making large errors at various horizons is fairly similar for most variables.

Figure 5 shows responses derived from alternative specifications of bivariate SVARs that

include labor productivity growth and either the level of hours worked (the dashed lines) or

the first difference of hours worked (the dash-dotted line). These specifications have often

been utilized in the empirical literature applying the Gaĺı methodology. The upper panel uses

26We found that the VARMA process for the four variables in the VAR with hours in differences has a root

on the unit circle so that the VARMA process is non-invertible but remains fundamental (this is also true for

the two variable specification with hours in differences considered below).
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the population moments to derive each of the VARs (using four lags), while the lower panel

reports the mean impulses derived from the Monte Carlo simulations (as in section 3, the

Schwartz criterion is used to select lag length). It is clear from the upper panel that the two

variable specifications perform less adeptly than our four-variable specification in recovering

the true responses: there is upward bias in the hours in levels specification, while there is

pronounced downward bias for the hours in differences specification. The lower panel shows

that the truncation bias is reflected in the mean bias observed in small samples. We note

that our results for these two variable VARs are similar to those reported by Chari, Kehoe,

and McGrattan (2004), who also find that a short-ordered VAR for either of the bivariate

specifications provides a poor approximation to the VARMA process implied by the RBC

model. However, our comparative analysis highlights how alternative specifications (such as

our four-variable VAR) may mitigate the problems associated with using a low-order VAR.27

Finally, we return to our four-variable specification and consider the effects of additional

shocks. Our analysis suggests that if shocks other than the unit root shock to technology

have a large impact on labor productivity, the ability of a low-ordered VAR to approximate

the underlying VARMA process may deteriorate markedly. This potential sensitivity is well-

illustrated in Figure 6, which reports responses from a four-variable SVAR that has four lags

and is derived using population moments from an alternative calibration of the RBC model

that includes capital tax rate and temporary technology shocks. In this alternative calibration,

the temporary technology shock contributes 50 percent of the variation to the growth rate of

the Solow residual, while the parameters of the capital tax rate process are estimated using

historical data (see Tables 1 and 2 for parameter estimates and selected second moments).

There is a sizeable deterioration in the performance of the population SVAR in this case, with

most of the divergence attributable to the temporary technology shocks.28

27In the appendix, we provide an explanation why the four-variable SVAR with hours in levels performs better

in the RBC model than the bivariate SVAR with hours in levels.
28The VARMA process in this case is invertible; however, because the additional shocks contribute to a very

slowly-decaying moving average component, a short-ordered VAR provides a poor approximation of the true

dynamic process.
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Perhaps surprisingly, the small sample bias appears to decline noticeably relative to the

benchmark RBC model. Returning to Table 3, the bias in output averaged over the first twelve

quarters is only about 2% compared with 25% in the benchmark specification of the model.

This reflects that the upward bias in the response of labor productivity and hours evident in the

population SVARs in Figure 6 appears to be roughly offset by the small sample bias discussed

in the previous section. But while it is “fortuitous” that the small sample bias decreases in this

particular calibration, it is possible that the various sources of bias could reinforce each other

in other models, and thus contribute to a considerable deterioration of the performance of the

SVAR.29

5 Sticky Price/Wage Model

In this section, we examine the robustness of our results by modifying the real business model

to include nominal and real frictions that have been found useful in accounting for the observed

behavior of aggregate data. These frictions include sticky wages and prices, variable capacity

utilization, costs of adjustment for investment, and habit persistence in consumption. As noted

above, one of the principal differences between this model and the RBC model is that hours

worked decline initially in response to a technology shock rather than rise as in the RBC model.

Since our sticky price/wage model is similar to Christiano, Eichenbaum, and Evans (2001) and

Smets and Wouters (2003), we provide only a brief account of how it is derived by modifying

the RBC model discussed above.

5.1 Model Description

We assume that nominal wages and prices are set in Calvo-style staggered contracts in a frame-

work similar to that discussed in Erceg, Henderson, and Levin (2000). The wage and price

29The problems we have identified might be much more severe in models for which it is not possible to choose

a parsimonious set of variables in the VAR that has a fundamental representation. See Hansen and Sargent

(2004) and Lippi and Reichlin (1993) for examples of models where this occurs.
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contracts have a mean duration of four quarters, and we set the wage and price markups both

equal to 1/3. The inclusion of nominal rigidities into the model requires us to specify a mon-

etary policy rule. We assume that the central bank adjusts the quarterly nominal interest

rate (expressed at an annual rate) in response to the four-quarter inflation rate and to the

four-quarter rate of growth of output:

it = γiit−1 + γππ
(4)
t + γy∆y

(4)
t + σmεit, (20)

where π
(4)
t = log(Pt/Pt−4), Pt is the aggregate price level, ∆y

(4)
t = log(Yt/Yt−4), and the

monetary policy innovation, εit. (Note that constant terms involving the inflation target and

the steady-state real interest rate have been suppressed for simplicity). Using U.S. quarterly

data for the period 1983:1-2002:4, we estimated values of γi, γπ, γy and σm to be 0.80, 0.60,

0.28, and 0.006, respectively.30

We introduce habit persistence in consumption by modifying the utility function of the

representative household in the following way:31

Et

∞∑
j=0

βj

{
log

(
Ct+j − φcC̄t+j−1

)− χ0t+j

N1+χ
t+j

1 + χ

}
. (21)

Our approach follows Smets and Wouters (2003) among others by assuming that an individual

cares about his consumption relative to the lagged value of aggregate consumption, C̄t. We set

φc = 0.6, close to the mean estimate of Smets and Wouters (2003).

We incorporate variable capacity utilization into the sticky price/wage model so that

variation in the Solow residual reflects both changes in technology and movements in the unob-

served level of capacity utilization in response to all of the underlying shocks. The production

function modified to include variable capacity utilization, ut, is given by:

Yt = (utKt)
θ((ZtVt)Nt)

1−θ, (22)

30We estimated equation (20) using instrumental variables where our instruments included lags of output

growth and inflation.
31For simplicity, we suppress that our utility function depends on real money balances in a separable fashion.

With monetary policy specified by an interest rate rule and money separable in utility, the equilibrium dynamics

of our model can be determined independently of the quantity of money.
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where Zt and Vt are the unit-root and temporary shocks to technology described earlier.

In our decentralized economy, households rent capital services (utKt) to firms, and choose

how intensively the capital is utilized. We follow Christiano, Eichenbaum, and Evans (2001)

and assume that households pay a cost to varying ut in units of the consumption good. These

adjustment costs alter the budget constraint of the representative household as follows:

Ct + It + 1
1+rt

Bt+1 −Bt =

(1− τNt)WtNt + Γt + Tt + (1− τKt)RKtutKt + τKtδKt − φi

2
(It−It−1)2

I2
t−1

− ν0
u1+ν

t

1+ν
.

(23)

In the above, the term, ν0
u1+ν

t

1+ν
, reflects the cost of adjusting the utilization rate, where ν0 is

normalized so that ut = 1 in non-stochastic steady state and ν is set to 0.01, as in Christiano,

Eichenbaum, and Evans (2001). Equation (23) also reflects the addition of adjustment costs

for investment, and in our calibration, we set φi = 2.32

As in our benchmark calibration of the RBC model, our benchmark calibration of the

sticky price/wage model abstracts from capital tax rate and temporary technology shocks by

setting στK
= σV = 0. We used the method of moments to estimate the innovation variances

of the permanent technology shock (0.0152) and the labor supply shock (0.069) by exactly

matching the model’s implications for the volatility of the Solow residual growth rate and the

standard deviation of (HP-filtered) hours worked relative to output to their sample counterparts.

For the other model parameters, shown in Table 1, we used the same values as for the RBC

model.

5.2 Estimation Results

Figure 7 exhibits the response of labor productivity, hours worked, consumption, investment,

and output to a technology shock for the benchmark sticky price/wage model. In each panel the

32This is lower than the value of around 4 for φi used by Christiano, Eichenbaum, and Evans (2001), who

estimated φi based on the response of investment to a monetary shock. However, we found that low values of

φi (less than one) were necessary for our sticky price and wage model to account for the unconditional volatility

of investment relative to output. Our choice of φi is an intermediate one between the values implied by these

calibration procedures.
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solid lines show the true responses from the DGE model. In the same panels, the dashed lines

show the mean responses from the SVAR derived from Monte Carlo simulations (as described

in Section 3). As in the case of the benchmark RBC model, the mean response of each of

these variables has the same sign and qualitative pattern as the true response. Moreover, as

suggested by the pointwise confidence intervals, the SVAR is likely to correctly imply a rise in

labor productivity, consumption, and output in response to the technology shock. The SVAR

is also likely to capture the initial decrease in hours worked that occurs following a technology

shock.33 Both the mean response and the 90% confidence intervals fall below zero in the two

periods following the shock, in line with the model’s response.

As in the case of the RBC model, the SVAR does not perform as well quantitatively. The

mean responses underestimate the true responses of labor productivity, output, consumption,

and investment by roughly 30-35 percent (see Table 3). This downward bias helps account for

the substantial probability of making large errors in estimating these variables, as shown in

Tables 4-6. Overall, the probability of making a large error in estimating most of the variables

seems commensurate with that of the RBC model, with the exception of investment. Interest-

ingly, we found that while the probability of estimating a response of labor productivity, output,

or consumption that was uniformly positive for four quarters following the shock exceeded 90%,

there was only a 63% chance of estimating a uniformly positive response of investment. Thus,

in this model, there appears to be considerably more qualitative uncertainty about the effects

of a technology shock on investment.

The bottom left panel of Figure 2 shows the cumulative distribution function derived

from Monte Carlo simulations of the estimator of the contribution of technology shocks to

explaining variations in HP-filtered output. The 90% confidence bands for the estimator include

contributions ranging from 7 to 80 percent. Therefore, as in the benchmark RBC model, the

Gaĺı identification scheme gives a very imprecise estimate of the importance of technology

33As in Vigfusson (2004) and Francis and Ramey (2003), the real frictions play an important role in accounting

for the model’s implication of a fall in hours. Thus, the initial fall in hours in the sticky price/wage model occurs

for a fairly wide set of reasonable monetary policy rules.
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shocks in explaining output fluctuations at business cycle frequencies.

We next examine the sources of bias in the mean responses using the same analytical

framework that was applied to the RBC model. The dashed lines in the top panel of Figure

8 show the responses to a technology shock derived from a SVAR with four lags that uses the

model’s population moments. While these responses diverge slightly from the true responses, it

is clear that a short-ordered population VAR performs well in approximating the true VARMA

process. Accordingly, as in benchmark RBC model, most of the bias in the estimated impulse

responses is attributable to the small-sample problems emphasized by Faust and Leeper (1997).

The small-sample bias in this model depends on many of the same model characteristics

as identified using the RBC model. In particular, the bias arises because the identification

scheme has difficulty disentangling unit root technology shocks from other shocks that may

have highly persistent effects on labor productivity, and because of slow capital adjustment. As

shown in Table 3, the bias is reduced when we decrease the persistence of the non-technology

shocks and accelerate capital adjustment by setting δ = 0.9; however, the change in the bias is

less dramatic than in the RBC model, because the additional real rigidities (e.g., investment

adjustment costs) in this model still imply considerable endogenous persistence.

5.3 Sensitivity Analysis in the Sticky Price/Wage Model

We next investigate the sensitivity of our results to including a different set of variables in

the SVAR, differencing hours worked, and adding capital tax rate and temporary technology

shocks.34

The bottom panels of Figure 8 show results for the two bivariate population SVARs

considered in Section 4.2 (i.e., each SVAR has four lags and is derived by replacing sample

moments with corresponding population moments). The dashed lines show the responses for

the SVAR with labor productivity growth and hours in levels, while the dash-dotted lines show

the responses of the alternative specification with hours in differences. Notably, in stark contrast

34For all these experiments, we checked that the VARMA process implied by the variables in the SVAR was

a fundamental representation.
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with their performance in the RBC model, each specification does very well in accounting for

the short-run response of hours worked.

Given the relatively modest bias in the two-variable specifications, their performance

in small samples is comparable to that of the four-variable SVARs. For example, Figure 9

illustrates the responses derived from estimating the bivariate specification with hours in differ-

ences. The mean response of hours lies very close to the true response in the short-run, and the

confidence intervals are somewhat narrower than in the four-variable specification with hours

in levels (see Figure 7). By contrast, this two-variable specification implies considerably more

upward bias in the hours response at longer horizons.

Finally, we find that the sticky price/wage model is somewhat less sensitive to the in-

clusion of the additional shocks than the RBC model.35 Using the population moments of the

sticky price/wage model with these additional shocks, the four-variable SVAR with four lags

displays a deterioration (not shown) in its ability to approximate the true dynamics; however,

this deterioration is less pronounced than in the RBC model. Similarly to the RBC model,

there is no evident deterioration in small sample performance in this case (see Tables 3-6).

Overall, our benchmark sticky wage and price model appears to exhibit much less sen-

sitivity than the RBC model to including different sets of variables in the estimated SVAR,

or to employing alternative transformations.36 Insofar as the model with nominal rigidities

includes a larger set of state variables that might be expected to make it more difficult for a

short-ordered VAR to approximate the true dynamics, this might appear surprising. However,

it emphasizes that the performance of a particular specification of the SVAR is dependent on

model structure; variables that work well in one model may perform poorly in a variant that

incorporates a different dynamic structure or alternative shocks.

35We calibrated these two additional shocks following the same approach discussed above for the RBC model.

Thus, the innovation variance of the stationary technology shock accounts for 50 percent of the variation in the

growth rate of the Solow residual. (See Tables 1 and 2 for details).
36We found that the four-variable specification with hours in differences yielded nearly identical results as the

specification with hours in levels. See Tables 3-6.

25



5.4 Discriminating Between Models Based on the Response of Hours

The empirical literature employing the SVAR approach has attempted to use it to differentiate

between alternative models of the business cycle based on the response of hours worked.37 In

this section we show that the SVAR may provide a basis for discriminating between models,

provided that the models have sufficiently divergent implications about the effects of technology

shocks on the labor market, and that the SVAR performs reasonably well in each model.

We illustrate this by assessing the ability of the SVAR to discriminate between our two

benchmark models based on the response of hours worked. We use a four-variable SVAR, since

we have shown that it performs well in each of our benchmark models. The upper panel of

Figure 10 shows the probabilities that the estimated response of hours is uniformly negative

in the first two and four quarters, respectively. The probability of finding an initial decline in

hours that persists for two quarters is 93 percent in the model with nominal rigidities, but only

26 percent in the RBC model. Accordingly, a researcher who found that hours worked declined

after a positive innovation in technology in the data could reasonably interpret this finding as

providing some evidence in favor of the sticky price/wage model. However, a researcher who

found that hours worked rose after a technology shock could regard this finding as offering

evidence in support of the RBC model: as shown in the lower panel, the probability of finding

an initial rise in hours that persists for two quarters is 71 percent in the RBC model, but less

than 1 percent in the sticky price/wage model.

The bivariate specification with hours in differences provides an interesting contrast. As

seen in Figure 9, this specification works extremely well in eliciting the true response of hours

in the sticky price/wage model. In fact, the confidence bands are noticeably tighter than those

associated with our four-variable specification shown in Figure 7. A researcher who had high

confidence that this model was correct might be inclined to adopt this specification of the VAR

rather than our four-variable specification. However, the ability of the bivariate specification to

differentiate between the benchmark sticky wage/price model and the RBC models considered

37See, for example, Gaĺı (1999), Christiano, Eichenbaum, and Vigfusson (2003), and Francis and Ramey

(2003).
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is undermined by its poor performance in the latter model. We find that this specification

implies there is a 90 percent probability that hours fall uniformly in the first two periods in

the RBC model, even though hours in fact rise (see Figure 5). Thus, under the null hypothesis

that the sticky price/wage model was the true data-generating process and the alternative the

RBC model, a researcher who relied on the bivariate SVAR would have little power to reject

the latter model.

6 Conclusion

While identifying technology shocks and their effects is a difficult task, our analysis suggests

that Gaĺı’s methodology is a useful tool. We find it encouraging that our four-variable VAR

specification performs reasonably well across the RBC and sticky price/wage models in char-

acterizing the qualitative effects of a technology shock on a range of macro variables. But our

analysis highlights that the conditions under which the Gaĺı methodology performs well appear

considerably more restrictive than implied by the key identifying restriction. Accordingly, it

will be useful in future research to delineate further the class of models for which this method-

ology works well, and also to examine empirically realistic conditions that might exacerbate

some of the problems we have identified in our analysis (e.g., stationary technology shocks).

Moreover, it will be beneficial to identify VAR specifications that appear to be robust across a

class of plausible models, insofar as this would enhance the latitude to use this methodology in

discriminating across models.
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Table 1: Parameters Values Common Across Calibrated Versions of Model∗

β = 1.03−0.25 τK = 0.38

χ0 = 1 ρg = 0.98

χ = 1.5 σg = 0.003

δ = 0.02 ρτN
= 0.98

θ = 0.35 στN
= 0.0052

µz = 0.0037 ρχ = 0.95

g/y = 0.20 ρτK
= 0.97

τN = 0.22 ρV = 0.95

∗ g/y denotes the steady state value of the ratio of government consumption to output.

Table 2: Selected Moments and Parameter Values of Calibrated Versions of Modela

Real Business Cycle Sticky Prices and Wages

Moment U.S. Datab σχ = 0 Benchmark with Additional Benchmark with Additional

Shocks Shocks

σy 2.17 1.38 1.72 1.67 2.00 1.82

σh/σy 0.80 0.28 0.80 0.80 0.80 0.80

σc/σy 0.47 0.73 0.61 0.56 0.78 0.72

σi/σy 2.91 1.98 2.26 2.55 2.35 2.53

σ∆S 0.96 0.96 0.96 0.96 0.96 0.96

Parameter Values

σz 0.0148 0.0148 0.0104 0.0152 0.0103

σχ 0 0.024 0.0198 0.0619 0.0335

στK 0 0 0.008 0 0.008

σV 0 0 0.0103 0 0.0102

a All moments except σ∆S were computed by first transforming the data using the HP-filter (with λ = 1600).
σ∆S refers to the standard deviation of the growth rate of the Solow residual.
b σy and σh were computed using BLS data on nonfarm business sector output and hours from 1958-2002.
σc/σy and σi/σy were taken from Christiano and Fisher (1995) who used DRI data from 1947-1995.
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Table 3: Distance Between Mean Estimates and True Impulse Responsesa

Experiment Labor Productivity Output Hours Consumption Investment

RBC Model 0.40 0.25 0.09 0.28 0.19

with σz = 1/3X 0.49 0.023 0.34 0.11 0.21

with lower persistenceb 0.17 0.16 0.01 0.16 0.15

with lower persistenceb and δ = 0.9 0.10 0.10 0.00 0.09 0.10

with hours differenced 0.24 0.33 0.08 0.30 0.34

with additional shocksc 0.22 0.02 0.14 0.13 0.15

Sticky Price/Wage Model 0.34 0.33 0.05 0.34 0.32

with lower persistenceb and δ = 0.9 0.19 0.20 0.03 0.20 0.30

with hours differenced 0.38 0.37 0.06 0.37 0.37

with additional shocksc 0.29 0.29 0.05 0.29 0.29

a Absolute value of percent difference between mean estimated response and true model response averaged
over first twelve periods. For hours worked, we report the absolute value of the difference from the true model
response.
b Lower persistence refers to the case where AR(1) parameters of non-technology shocks are set to half the
benchmark values.
c The additional shocks are capital tax rate and temporary technology shocks.
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Table 4: Probability that Estimated Response is Uniformly Far From True Response Over First

Two Quartersa

Experiment Labor Productivity Output Hours Consumption Investment

RBC Model 0.48 0.27 0.26 0.31 0.35

with σz = 1/3X 0.61 0.67 0.28 0.52 0.78

with lower persistenceb 0.10 0.08 0.16 0.04 0.15

with lower persistenceb and δ = 0.9 0.03 0.08 0.37 0.07 0.10

with hours differenced 0.27 0.39 0.42 0.34 0.44

with additional shocksc 0.34 0.40 0.23 0.26 0.61

Sticky Price/Wage Model 0.35 0.31 0.02 0.36 0.79

with lower persistenceb and δ = 0.9 0.12 0.16 0.00 0.15 0.70

with hours differenced 0.41 0.35 0.03 0.41 0.80

with additional shocksc 0.38 0.35 0.10 0.30 0.86

a For all variables except hours worked, the probability that the estimated response lies at least 33% above or
below the true response for the first two quarters. For hours worked, the probability that the sign of the
estimated response is incorrect in each of the first two quarters.
b Lower persistence refers to the case where AR(1) parameters of non-technology shocks are set to half the
benchmark values.
c The additional shocks are capital tax rate and temporary technology shocks.
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Table 5: Probability that Estimated Response is Uniformly Far From True Response Over First

Four Quartersa

Experiment Labor Productivity Output Hours Consumption Investment

RBC Model 0.43 0.24 0.23 0.28 0.28

with σz = 1/3X 0.54 0.58 0.25 0.44 0.70

with lower persistenceb 0.05 0.03 0.04 0.03 0.05

with lower persistenceb and δ = 0.9 0.02 0.04 0.20 0.04 0.05

with hours differenced 0.22 0.35 0.38 0.30 0.39

with additional shocksc 0.30 0.31 0.21 0.22 0.51

Sticky Price/Wage Model 0.31 0.26 0.02 0.32 0.71

with lower persistenceb and δ = 0.9 0.10 0.12 0.00 0.13 0.30

with hours differenced 0.37 0.30 0.03 0.38 0.71

with additional shocksc 0.34 0.30 0.07 0.28 0.78

a For all variables except hours worked, the probability that the estimated response lies at least 33% above or
below the true response for the first four quarters. For hours worked, the probability that the sign of the
estimated response is incorrect in each of the first four quarters.
b Lower persistence refers to the case where AR(1) parameters of non-technology shocks are set to half the
benchmark values.
c The additional shocks are capital tax rate and temporary technology shocks.
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Table 6: Probability that Estimated Response is Uniformly Far From True Response Over First

Twelve Quartersa

Experiment Labor Productivity Output Hours Consumption Investment

RBC Model 0.36 0.17 0.16 0.22 0.16

with σz = 1/3X 0.40 0.36 0.19 0.32 0.46

with lower persistenceb 0.02 0.01 0.00 0.01 0.01

with lower persistenceb and δ = 0.9 0.01 0.01 0.06 0.01 0.01

with hours differenced 0.13 0.29 0.32 0.25 0.31

with additional shocksc 0.22 0.19 0.17 0.15 0.30

Sticky Price/Wage Model 0.25 0.23 NA 0.25 0.61

with lower persistenceb and δ = 0.9 0.05 0.07 NA 0.07 0.15

with hours differenced 0.30 0.26 NA 0.30 0.61

with additional shocksc 0.24 0.25 NA 0.22 0.63

a For all variables except hours worked, the probability that the estimated response lies at least 33% above or
below the true response for the first twelve quarters. For hours worked, the probability that the sign of the
estimated response is incorrect in each of the first twelve quarters. In the sticky price/wage model, this
probability is not reported as the model response changes its sign after five quarters.
b Lower persistence refers to the case where AR(1) parameters of non-technology shocks are set to half the
benchmark values.
c The additional shocks are capital tax rate and temporary technology shocks.
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Figure 1: Responses to Technology Shocks in the Benchmark RBC Model∗
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∗ VAR results based on 10,000 samples of 180 quarterly observations. In the lower right panel, T bias refers to
bias that persists asymptotically from approximating the true VARMA process with a VAR of order 4. The R
bias reflects small-sample bias from estimating the reduced-form VAR. The A bias reflects small-sample bias
associated with the transformation of the reduced-form to the structural form.
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Figure 2: Estimated Cumulative Distribution Functions for the Contribution of Unit-Root

Technology Shocks to HP-Filtered Output Variation∗
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a The additional shocks are capital tax rate and temporary technology shocks.
b Lower persistence refers to the case where AR(1) parameters of non-technology shocks are set to half the
benchmark values.

37



Figure 3: Responses to a Technology Shock in the Benchmark RBC Model Using Population

Moments∗

0 5 10 15 20
0

0.2

0.4

0.6

0.8

%
 d

ev
 fr

om
 s

s 
gr

ow
th

 p
at

h

Labor Productivity

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

%
 d

ev
 fr

om
 s

s

Hours Worked

0 5 10 15 20
0

0.2

0.4

0.6

0.8

%
 d

ev
 fr

om
 s

s 
gr

ow
th

 p
at

h

Consumption

0 5 10 15 20
0

0.5

1

1.5

2

%
 d

ev
 fr

om
 s

s 
gr

ow
th

 p
at

h

Investment

model response
VAR response (hours in levels)
VAR response (hours differenced)

quarters quarters 

quarters quarters 

∗ Results based on VARs of order 4 estimated with population moments.
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Figure 4: Responses to Technology and Labor Supply Shocks in the RBC Model∗
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∗ VAR results based on 10,000 samples of 180 quarterly observations using the RBC model with smaller
technology shocks (σz = 0.0049).
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Figure 5: Responses to a Technology Shock in Benchmark RBC Model for Bivariate VAR

Specifications∗
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a Results based on VARs of order 4 estimated with model’s population moments.
b Mean results based on 10,000 samples of 180 quarterly observations.
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Figure 6: Responses to a Technology Shock in the RBC Model with Additional Shocks Using

Population Moments∗
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∗ Results based on VARs of order 4 estimated with model’s population moments. VAR response for “cap. tax
shock” refers to the case where the data-generating process is the benchmark RBC model augmented to
include capital tax rate shocks (with στK

= 0.008). VAR response for “temp. tech. and cap. tax shocks” refers
to the case where the data-generating process is the RBC model augmented to include both capital tax rate
and temporary technology shocks.
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Figure 7: The Effects of Technology Shocks in Benchmark Sticky Price/Wage Model∗
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∗ VAR results based on 10,000 samples of 180 quarterly observations. In the lower right panel, T bias refers to
bias that persists asymptotically from approximating the true VARMA process with a VAR of order 4. The R
bias reflects small-sample bias from estimating the reduced-form VAR. The A bias reflects small-sample bias
associated with the transformation of the reduced-form to the structural form.
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Figure 8: Responses to a Technology Shock in Sticky Price/Wage Model Using Population

Moments∗
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∗ Results based on VARs of order 4 estimated with model’s population moments.
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Figure 9: Responses to a Technology Shock in Sticky Price/Wage Model Using a Bivariate

SVAR with Hours Differenced∗
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∗ VAR results based on 10,000 samples of 180 quarterly observations.
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Figure 10: The Response of Hours in Each of the Benchmark Models∗
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∗ VAR results based on 10,000 samples from each model of 180 quarterly observations. Probability uniformly
negative (positive) refers to the likelihood that the estimated response of hours is negative (positive) in each of
the first two and first four quarters. Because we use uniform probabilities, the probabilities of positive and
negative responses do not necessarily sum to one.
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7 Appendix

This appendix is divided into four sections. In the first, we show results for the SVAR with

different sample lengths and different fixed lag-lengths. In the second, we discuss how the

log-linear solution of our RBC model can be written as a VARMA(4,5). In the next section,

we describe the error decomposition. Finally, we report regression results further examining

variable selection in the RBC model.

7.1 Results for Different Sample Lengths and Fixed Lag Lengths

Table A documents the performance of the SVAR using different sample lengths of data

generated under the benchmark RBC calibration. In practice, researchers might be limited to

samples shorter than 180 quarterly observations, or might choose to work with a smaller

sample due to structural breaks. In the row labelled “120”, which corresponds to 30 years of

quarterly data, we report the probabilities of large misses over the first four quarters following

the shock. Not surprisingly, our results suggest that the problems documented so far are

compounded by reducing the length of the estimation sample.

We investigated how large a sample we would need to ameliorate the small-sample

problems documented so far. Table A shows that even with 100 years of data there would still

be a sizable chance of making large errors. For instance, the probability that the response of

labor productivity would be estimated uniformly outside a 33% band around the true

response remains as high as 19%. Only when the estimation sample includes 1000 quarterly

observations do most of the probabilities of large misses drop below 10%.

Table B investigates how the performance of the SVAR depends on the number of lags

included; thus, rather than using the Schwarz criterion to determine the lag length for each

Monte Carlo draw, in these experiments we simply fix the lag length at a constant value p (we

use a sample length of 180 quarterly observations). The table reports the probabilities of large

errors over the first four quarters for different lag lengths. There is some modest improvement

in the fit of the SVAR for smaller values of p. Still, the probability of a large miss for labor
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Table A. Varying the Sample Size for the Benchmark RBC Calibration: Uniform Probability

that Estimated Response is Far From True Response Over First Four Quartersa

Number of Quarters Labor Productivity Output Hours Consumption Investment

120 (10 years less) 0.63 0.43 0.23 0.51 0.38

180 (benchmark length) 0.44 0.25 0.23 0.27 0.28

260 (20 years more) 0.32 0.16 0.22 0.18 0.24

400 (100 years) 0.22 0.11 0.22 0.11 0.22

1000 (250 years) 0.05 0.03 0.20 0.04 0.12

a For all variables except hours worked, the probability that the estimated response lies at least 33% above or
below the true response for the first four quarters. For hours worked, the probability that the sign of the
estimated response is incorrect in each of the first four quarters.

Table B. Varying the VAR Lag Structure for the Benchmark RBC Model: Probability that

Estimated Response is Uniformly Far From True Response Over First Four Quartersa

Experiment Labor Productivity Output Hours Consumption Investment

Lag length = 2 0.40 0.19 0.21 0.21 0.26

Lag length = 3 0.40 0.20 0.21 0.22 0.26

Lag length = 4 0.41 0.22 0.21 0.24 0.26

Lag length = 5 0.42 0.23 0.22 0.26 0.26

Lag length = 6 0.44 0.25 0.22 0.28 0.27

Lag length = 9 0.49 0.32 0.23 0.35 0.31

Lag length = 10 0.51 0.34 0.24 0.38 0.32

BIC 0.44 0.25 0.23 0.27 0.28

a For all variables except hours worked, the probability that the estimated response lies at least 33% above or
below the true response for the first four quarters. For hours worked, the probability that the sign of the
estimated response is incorrect in each of the first four quarters.
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productivity is above 40 percent, and there is over a 20 percent chance of concluding that

hours worked fall when in truth it rises.

7.2 Writing the RBC Model as a VARMA(4,5)

We first obtain a log-linear solution of the RBC model around its non-stochastic steady state.

This allows us to express the log-linear decision rule for the economy’s scaled capital stock,

k̂t+1 = Kt+1/Zt, as a function of lagged capital, k̂t, and a vector of the four exogenous shocks,

St = (µ̃zt, τ̃Nt, g̃t, χ̃0t)
′ in the benchmark calibration, (where the tilde denotes that the variable

is expressed in log deviation from its steady state value). Also, for convenience, we have

defined µzt = log(Zt)− log(Zt−1) and rewritten equation (6) more generally as

µzt = (1− ρz)µz + ρzµzt−1 + σzεzt, (24)

even though ρz = 0.

The log-linear decision rule for the scaled capital stock can then be expressed as:

k̃t+1 = akkk̃t + bksSt, (25)

where akk is a scalar and bks is a 4x1 vector of coefficients. We can also write hours worked,

the consumption-to-output ratio, and investment-to-output ratio as a function of k̃t and St,

while the growth rate of labor productivity is a function of k̃t, k̃t−1, St, and St−1. Therefore,

the model’s dynamics for Xt, the vector containing the variables in our VAR, can be

expressed as:

X̃t = C1k̃t + C2k̃t−1 + D1St + D2St−1, (26)

where C1 and C2 are 4x1 vectors and D1 and D2 are 4x4 matrices.

Using the log-linear decision rule for kt+1 to substitute the scaled capital stock out of

the linear decision rules for labor productivity growth, hours, and the ratios of consumption

and investment to output, we can express the linear dynamics of Xt as:

Xt = akkXt−1 + (B0 + B1L + B2L
2)St (27)

St = ρSt−1 + σεt
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where B0 = D1, B1 = C1Bks − akkD1 + D2, and B2 = C2Bks − akkD2; ρ and σ are diagonal

4x4 matrices whose respective elements contain the AR(1) coefficients and standard

deviations of the innovations. Finally, εt = (εzt, ετN ,t, εχt, εgt)
′.

It is convenient to rewrite the first equation in (27) as:

(I − akkL)Xt =
4∑

j=1

(B0,c(j) + B1,c(j)L + B2,c(j)L
2)Sjt, (28)

where B0,c(j) denotes the jth column of B0, and Sjt is the jth shock in St. Because ρ and σ are

diagonal matrices, we denote the jth element along the diagonal of these matrices as ρj and

σj, respectively. Using these diagonal matrices, we can substitute out St from equation (28) to

write

4∏
i=2

(1− ρiL)(I − akkL)Xt =

4∏

i=2,i6=j

4∑
j=1

(1− ρi)(B0,c(j) + B1,c(j)L + B2,c(j)L
2)εjt,

or

a(L)Xt = b(L)εt, (29)

with a(L) =
∑4

i=0 aiL
i and b(L) =

∑5
i=0 biL

i. In the above, a0 = I4 and ai for i = 1, 2, 3, 4 are

4x4 matrices that depend on akk and ρj for j = 2, 3, 4. Also, b0 = B0 and bi for i = 1, 2, 3, 4, 5

are 4x4 matrices that depend on the elements of B0, B1, and B2 and ρj for j = 2, 3, 4. Note

that a(L) and b(L) do not depend on ρ1 since ρz = ρ1 = 0.

Lippi and Reichlin (1993) make the point that researchers fitting a VAR to the data

would not be able to recover the underlying shocks, if the data generating process had a

non-fundamental representation. Therefore, for our benchmark calibrations, we checked that

our model implied a fundamental representation by verifying numerically that the polynomial

det(b0 + b1z + ... + b5z
5) has all roots strictly outside the unit circle. This condition ensures

that the VARMA process in equation (29) is invertible and is a fundamental representation

for Xt (see page 222 and page 456 of Lutkepohl (1991)).
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7.3 Error Decomposition

We can decompose the error in estimating the response to a technology shock for a given

Monte Carlo draw into two sources:

d̂l,i − d∗l,i = (dl,i − d∗l,i) + (d̂l,i − dl,i), (30)

where d̂l,i denotes the estimated impulse response for ith variable, at lag l for a particular

draw. Also, d∗l,i denotes the impulse response from the DGE model, and dl,i is the estimate of

the SVAR’s impulse response using the model’s population moments. We compute dl,i by

using the log-linear solution of the DGE model to find the population estimates of Aj,

j = 1, 2, ..., p, and use those estimates along with equation (16) to determine A0.

This first source of error (dl,i − d∗l,i) arises because the VAR we estimate is an imperfect

approximation of the VARMA process implied by our models. The second source (d̂l,i − dl,i)

reflects small-sample bias.

We now proceed to decompose the small-sample error into error arising from estimating

the reduced form and error from transforming the reduced form to structural form. We begin

by noting that

d̂l,i = R̂l,r(i)α̂, (31)

where α̂ denotes the finite-sample estimate of the first column of A0, R̂l is the finite-sample

estimate of Rl, and the subscript r(i) denotes the ith row of this matrix. It is important to

recognize that α̂ is implicitly a function of R̂(1) through equation (16).38 We follow Faust and

Leeper (1997) and decompose the small sample error of estimating the impulse response of

variable i at lag l as

d̂l,i − dl,i = (R̂l,r(i) −Rl,r(i))α̃ + R̃l,r(i)(α̂− α). (32)

38We define α̂ = α(R̂(1), Σ̂) where R̂(1) and Σ̂ are the VAR’s estimates of R(1) and the reduced form

variance-covariance matrix Σ, respectively. Our decomposition does not parse out the error from estimating the

variance-covariance matrix from estimating R(1). However, for both of the benchmark models, we checked that

the error from having to estimate α(R(1), Σ̂) was small and most of the error was due to estimating α(R̂(1),Σ).
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The matrices, α̃ = 1
2
(α̂ + α) and R̃l,r(i) = 1

2
(R̂l,r(i) + Rl,r(i)) are defined to lie halfway between

the finite-sample estimates and the population estimates of the SVAR. In equation (32), the

small sample error, d̂l,i − dl,i, has been decomposed into two parts: the first emphasizing the

error in estimating the reduced-form moving average term, Rl,r(i), and the second emphasizing

the error in estimating R(1) through the α term (the latter is the error in transforming the

reduced form to structural form). Finally, we compute the R bias measure reported in Figures

1 and 7 by averaging this first source of error over the 10,000 Monte Carlo replications. We

compute our A bias measure by averaging the second source of error.

7.4 Additional Variable Selection Analysis Using the Benchmark

RBC Model

In this section, we conduct some additional analysis regarding variable selection and discuss

why the benchmark, four-variable SVAR performs better in the RBC model than the

bivariate SVAR with hours in levels. We begin by documenting that the three variable SVAR

that includes labor productivity growth, hours worked, and the scaled capital stock, Kt+1/Zt,

can perform well when the benchmark RBC model is used as the data-generating process.

This result is shown in Figure A, which shows the responses of labor productivity and hours

worked for the three-variable SVAR using four lags and the model’s population moments.

Comparing this to the results of the bivariate SVAR in Figure 5, it is clear that the

performance of the short-ordered SVAR improves considerably if we augment the state space

to include the scaled capital stock.

In practice, an obvious difficulty with the above three-variable SVAR is that the scaled

capital stock is unobservable. However, in the RBC model, there are several observable

variables that are highly correlated with it and can help “proxy” for it. One natural

candidates is the capital to output ratio, Kt+1/Yt. Although we do not show it here, a

three-variable SVAR that includes this variable performs as well as the three-variable SVAR

with Kt+1/Zt.

There are also other variables in the RBC model that are correlated with the scaled
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capital stock and can improve the VAR’s performance. One useful way of summarizing such

variables is to fit the following equation:

k̂t+1 = Θ0Xt + Θ1Xt−1 + Θ2Xt−2 + ... + ΘpXt−p + εt, (33)

by choosing Θ0,...,Θp to minimize E(ε2
t ). In the above, k̂t+1 is the log-deviation of the scaled

capital stock from its steady state value and Xt is a vector of variables (in log-deviation from

steady state) that includes labor productivity growth and hours worked and possibly other

observable variables that are presumed to provide additional explanatory variable for the

scaled capital stock.

Table C shows the R-squareds from this regression where Xt contains only labor

productivity growth and hours worked. In this case, if the lag length is four, the R-squared is

0.34. As we increase the lag length to 100, the R-squared rises to 0.92. In contrast, the

R-squared is always close to one if we include the capital-to-output ratio in the regression.

Table C also suggests that including the ratios of consumption and investment to

output would be good additions to the bivariate SVAR, as confirmed in our analysis. The

inclusion of these variables in the regression appears to be preferable to including consumption

and investment in differences, and not surprisingly, the short-ordered, four-variable SVAR

with ∆Ĉt and ∆Ît (not shown) does not perform as well as the SVAR with Ĉt− Ŷt and Ît− Ŷt.

52



Figure A. The Response to a Technology Shock in the Benchmark RBC Model Using

Population Moments for a 3-Variable SVAR∗
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∗ Results based on fourth-ordered VAR that includes labor productivity growth, hours worked, and the scaled
capital stock.

Table C. R-Squareds from Scaled Capital Stock Equation∗

Independent Variables (Xt) p = 0 p = 1 p = 4 p = 20 p = 100

X1t = (∆(Ŷt − N̂t), N̂t)′ 0.08 0.16 0.34 0.79 0.92

(X1t, K̂t+1 − Ŷt)′ ≈ 1 1 1 1 1

(X1t,∆K̂t+1)′ 0.13 0.89 0.89 0.91 0.95

(X1t, Ĉt − Ŷt)′ 0.53 0.59 0.71 0.95 ≈ 1

(X1t, Ît − Ŷt)′ 0.59 0.61 0.66 0.84 ≈ 1

(X1t,∆Ĉt)′ 0.17 0.36 0.63 0.87 0.94

(X1t,∆Ît)′ 0.10 0.18 0.36 0.80 0.94

(X1t, Ĉt − Ŷt, Ît − Ŷt)′ 0.99 0.99 0.99 ≈ 1 ≈ 1

(X1t,∆Ĉt, ∆Ît)′ 0.22 0.78 0.87 0.91 0.95

∗ p denotes the regression’s lag length.
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